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Casilla 5487, Santiago, Chile 
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Abstract. The quantum inverse scattering method is used for the study of field theories 
with quartic-type interaction in 1 + 1 dimensions. Appropriate Lax pairs are constructed, 
and the corresponding Heisenberg fields are recovered from the quantised scattering data. 

1. Introduction 

The quantum version of the one-component nonlinear Schrodinger model is defined 
by the Hamiltonian 

H = [dx ( q h x  + mq'q + cq'q'qq) c > o  (1) 

where q is a non-relativistic boson field with equal time commutation relation 

[ d ( X ) ,  q ( y ) l =  S(X- Y )  (2) 
and with the weak asymptotic behaviour, as 1x1 +CO,  

q(x)  + 0. (3) 

The dynamics of q is given by the so-called nonlinear Schrodinger equation (NLS) 

iqt = -431 + mq + 2cqtqq. (4) 

The Hamiltonian (1) describes a one-dimensional Bose gas interacting via a &function 
potential. We will consider, in both the one- and two-component models, the repulsive 
case c > 0, for which the problem of interest is to determine the Green functions for 
a finite density ground state. 

In the quantum case the inverse scattering method has been used by Faddeev and 
Sklyanin (1978), Sklyanin (1979) and Thacker and Wilkinson (1979) to give a complete 
description of the spectrum and the eigenfunctions of the Hamiltonian (1). 

The inverse problem of recovering the Heisenberg field from the quantised reflection 
coefficient for the one-component NLS has been formulated in terms of an integral 
equation of Levitan-Gelfand type by Thacker and Wilkinson (1979), Gockeler (1981) 
and Smirnov (1982), and recently in terms of an ordinary differential equation by 
Lund (1982), via a lattice method (Izergin and Korepin 1981, Smirnov 1982). 

t On leave from Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. 
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In this paper we present a different approach to that in the works listed above to 
recover the Heisenberg fields from the quantised scattering data for both the one- and 
two-component NLS models. 

2. One-component NLS model 

We consider the normal operator version of the Zakharov-Shabat (1971) eigenvalue 
problem 

and consider also the following operator A, defined by its action on the space of 
eigenfunctions of L, 

). (5) A( i:) = ( P'lxx - (1 + p)-'(qt$ls f ( m / 2 c )  $2) 

P h x x  + (1 - p)-'(qtlL24 + ( m /  2c)  $1) +MI% 

The key point is that the eigenfunctions of L satisfy the commutation relations (which 
follow from (2) and ( 5 ) )  

[$I(X), q(x)l  =[$Ax), q'(x)I = 0. 

L, = i[L, A]. (8)  

(7) 

Using (7) one discovers that the NLS equation is equivalent to 

Relation (8) and the hermiticity of A guarantee that A generates an isospectral 
flow for L. In this connection the eigenfunctions of L satisfy 

where f may be chosen from considerations of convenience. If one makes the change 
of variables 

$1 + (1 exp[ihx/( P2- l ) l $ 2  $2' (1 + ~ ) ~ / ~ e x p [ i h x / ( p ' -  l)]qbl 

equation ( 5 )  can be rewritten in the following way: 

+ z x  - ik$2 = 

(10) 

We define now, for real k, the following two sets of different solutions of (10) (not 
necessarily linearly dependent) : 

AP 
1-P  

k =-? (spectral parameter). 
+ ik+l = J G 2 4  
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The scattering data are defined by 

r$ ~ ( a (  k)  e-ikx) 
X++CO 

b( k) elkX 

and the quantised reflection and transmission coefficients by 

R i  = ba-' Tt = a-' .  (13) 
If we choose f in equation (9) in such a way that the definitions (1 l a )  and (1 1 b )  

are conserved in time, one obtains using (9), (12) and (13) that the scattering operators 
evolve in time in a simple way 

R:=-i(4k2+m)Rt T: = 0. (14) 

2.1. Inuersion formulae 

One can show that the operators $, r$ and a (resp I&&, a') can be analytically continued 
into the upper (resp lower) half plane of the complex variable k for every x, with the 
following asymptotic behaviour, as I k (  +CO: 

In the quantum case, the main technical problem is that the relation 

r$ =a$+ b$ (16) 

is no longer valid, so one cannot follow the procedure given by Deift et a1 (1980). 
The problem is solved by defining the quantum analogue of (16) 

A = $+ Rt$. (17) 

One can show that the operator A can be analytically continued into the upper half 
of the complex k-plane, where it has the asymptotic behaviour, as I k (  + CO, 

eikxA+(k) + O ( l / k ) .  

Intergrating the expression $,A,  (resp A:$:) on a half circle of large radius in the 
upper (resp lower) complex k-plane, closed by the real axis, using the asymptotic 
behaviour (15), and (18), one gets 

&q = I dk ( $ ~ R $ ~ - I ~ I ~ R ' $ , ) .  (19) 

It is worthwhile to note that if one considers the expression A I &  (resp $;Ai) ,  one 
recovers Lund's result (Lund 1982) 

Using similar reasoning, it is also possible to obtain the inversion formulae 

dk (~-4ik)($:R$:-$,R+$~) (20a) 
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ii.rrcqt(x)q(y) = dk ke-ik(y-xl(+t( 1 x, k)R+2Y, k)  - +2(& k)Rt41(Y, k) )  I 
(+:(49:(Y)R --Rt+2(44l(Y)).  (20b) = dk k e - i k ( y - x )  

If one takes y = x  in (206) one recovers Lund's result (Lund 1982). Moreover, the 
infinite number of conserved quantities for the model also admit inversion formulae 

n = O , l ,  . . . .  (21) 
d" 

n ! i r  'I dk 
an+l=-  dk ( ~ ~ + 2 + R ' r L I + 2 ) ( - ) n + 1 k n ~ ( k n  l n a )  

Finally, the inverse method is completed if one substitutes (19) into ( lo) ,  then solves 
(10) together with the definition ( l l ) ,  substituting the solution back into (19) to get 
q as a function of the quantised reflection coefficient. 

3. Two-component NLS model 

The model is defined by the Hamiltonian 

where 

together with the equal time commutation relations 

[qt(x), q j ( ~ ) I =  Sij6(x-Y) 

and with the weak asymptotic behaviour, as 1x1 + 03, 

41'0 q2 + 0. 

iqu= -41xx + w, + 2 c ( d q ,  + a2qh2)q,  

iq21= -q2xx + w2 + 2c(dq1+ a2qh2)q2. 

The equations of motion read 

The generalisation of the associated problem (9, (6) corresponds to 
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As in the one-component case, the key point is the commutation relations (which 
follow from (24) and (27)) 

[$3(x), 41(x)l= [$3(x), 42(x)1 = o  [$i(X), 41(x)1= 0 i = l , 2 .  (29) 

Using (29), one obtains that (26) is equivalent to 

L, = i[L, A] (30) 
and that the eigenfunctions of L evolve in time according to 

i$r = A$ + f ( L )  $* (31) 
We consider now the L-eigenvalue problem (27), and make the change of variables 

$1 -$ (1 -P)'" exp[iW(p2-  1)1$3 (L2+ (1 -p)'" expCiAx/(p2- 1)]$2 

$ 3 +  (1 +p)'" exp[iAx/(p2- 1)]41~. (32) 

(Cllx+ikl(l l  = $ 3 6 1 + $ 2 6 2  * 2 x  -ik*z = 4:*1 $3x -ikljl3 = 6 h  (33) 

61 = &l d2 = a&q2 k=Ap/(l-p2). (34) 

Equation (27) can be rewritten in the following way: 

We define the following sets of different solutions of (33) (not necessarily linearly 
dependent): 

X -$ -0. (35) 

The generalised scattering data are defined by the asymptotic behaviour of ( 4 ' ,  4', 43) 
as x + + m  

4'," -$ a,(k) eCkr c#J$') -$ b,2( k) elkx 4t) + b,3( k) elkx J = 1,2 ,3 .  
(36) 

As in the one-component case, we choose f in (31) such that the definition (35) is 
conserved in time. Having done this, and using (31), one gets 

= b22r = b23t = b321= b33, = O  

b12, = -i(4k2+ m)blz b13t =-i(4k2+m)b13 (37) 
uz, = i(4k2+ m)uZ 

It is also convenient to define the operators 
a3,  =i(4k2+ m)u3.  

One can show that the operators 4(", $('), $(3 ) ,  a,,  A") (resp $"), 4(2) ,  4 ~ ' ~ '  7 b 229 b32, 
b23, b33, A"),, A(3) )  can be analytically continued in the upper (resp lower) complex 
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k-plane for every x, where they have the asymptotic behaviour, as I kl + CO, 

elkx$(l) ,  -q^:/2ik c e l k x A ( l )  i ' !  -q^:/2ik 

q2/2ik' 

O J  

e -1kx+(2)  1 }+ e - i k x h ( Z )  (39) 

3.1. Inversion formulae 

We proceed now in a similar way to the one-component case. For instance, we outline 
below the procedure to obtain the Heisenberg fields dl, d2.  We integrate the expression 
$L:3'h:1) (resp on a half circle of large radius in the upper (resp lower) corriplex 
k-plane, closed by the real axis, using the aymptotic behaviour (39), and the analyticity 
properties; finally, subtracting the two contour integrals, one gets 

?TdI = dk ($\')b;ia3$\') +$(,2)b;:b3Z+\1) -$\3'b13u;1$\3) - $j3)b12ul -1  G1 ( 2 ,  ). (30) 

the result For the field d2 ,  one has to consider the expression $(12)A:1) (resp 
is 

~ r q ^ ~ =  dk ($y)b;ib23$(11) +JI: ')b;:~2$:')-$j~'b!3aI -1 $ 1  171 -$(12'bi:ai -1 $ 1  (2)  1. (41) I 
Following a similar procedure, one obtains the more useful formulae 

I W 1  ?Tq l̂ = dx ($FjtR / ( I )  + $i2)tRz$\l) - $?)'Rt 2 $ ( 3 )  1 - $!') 'R ; $!21 ) 

(42) 
t ( 2 )  

I 
q2 = dx (JIi3)tR $ ( l )  + $y)tR2$$1' - $ 2  ( 1 ) '  RI$!" -$:"tR~cCI~ A /  1 1  

where the reflection coefficients R:  and R: are defined by 

R:= b13~; '  R i  = b12a;' .  (43) 
The connection with the one-component case formula (19) is now evident. 
Using similar reasoning it is also possible to show 

Ici ? ~ q ^  ;( x) q̂  ( y i 

= I dk k e l h ( Y  - X )  (W (x,$:" ( y ) b h  + $:" (x)$'12' ( Y K :  b 3 2  

- b  .-I ( 3 )  - I  (2 )  
13 1 $3 (~ )9 '1* ' (y ) -b l2a l  $3 (x)$i2)(y)) 

= [dk kelk(Y-xJ (x)+j2) '(Y )R, + $P ( ~ > 9 : ~ ) ' '  ( Y 1% 

- R:$j2'( x)$(:)~ (y)  - R;$i3' (x)$L1) '( y ) )  
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4. General remarks 

(1) The fact that one has to introduce (17) (resp (38)) is precisely the argument 
that the sets of solutions (11) (resp (35)) are not linearly dependent when these are 
operators. If one takes them as c-numbers one recovers the usual classical expressions. 

(2) By using the inversion formulae (42) one can prove that 

 XI) * * * q:(Xn)q:(yl) * q:(Ym)lO>=R:(xl). . R:(xn)R:(yl) R:(yn)lO) (45) 

where 

R:(x) = ( & 2 ~ ) - '  dk eikXR:(k/2) I R:(x) = (&27r)-' dk e i k X R : ( k / 2 )  I 
and x1 3 .  . . 3  xn; y1 2 ,  . . k ym. 

irrelevant phase) are given by 
On the other hand, using (37) we obtain that the eigenstates of (22) (up to an 

~ : ( k 1 / 2 )  * . ~ : ( k n / 2 ) ~ : ( ~ 1 / 2 )  * R:(pm/2)IO>. (46) 

Finally, using (45) it is possible to show that the wavefunction of the state (46) turns 
out to coincide with the wavefunction obtained by Bethe ansatz (Ottinger 1981). 

5. Conclusions 

In this work we have been able to construct the Heisenberg fields in terms of the 
quantised scattering data, for the one- and two-component nonlinear Schrodinger 
theory. We have also derived in the one-component case inversion formulae for qx, 
qxx and qt, which can be useful to study the short-distance and short-time behaviours 
of the Green function of the model for finite values of the coupling constant. Of 
special interest is formula (A2.2), since this will let us avoid using the complicated 
time evolution of the quantised Jost functions given by (6) and (9). 

At this stage the last remarks are only a conjecture, but progress is being carried 
out in this direction, which we hope to report in a subsequent paper. 

We think that rather than formulae (19) and (20b), the crucial formulae of our 
formalism are (20b), (44) and (A2.3), which we hope will provide some new insight 
in connection with computing the propagators (n-point Green functions) of the models 
(one- and two-component NLS) using non-perturbative techniques. 

As is seen in appendix 1, our formalism is in some way equivalent to previous 
formulations (integral-type), so it follows that the quantisation procedure followed 
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(infinite support) is equivalent to the usual normal ordering procedures. At this point 
I would like to remark that if one wants to get normal ordered expressions with respect 
to the physical vacuum, one can (following Jimbo et a1 (1980)) add a term A(qtqt+qq) 
in the Hamiltonian which allows us to consider (q(x))-+ constant, as 1x1 +. CD, analogous 
to the classical vacuum at finite density; since this new term affects the A operator 
and not the L operator, it follows that the spatial dependence of the Jost functions 
remains unchanged, which implies that the inversion formulae remain unchanged, too. 
As a last step one takes A + 0, to get the correct physical observables. 

Despite the equivalence mentioned before, our formalism has the advantage of 
formulae ( 2 0 b ) ,  (44) and (A2.3) (so related with n-point functions), which are not 
possible to derive following the usual formulations. 

Finally, I would like to remark that using formulae (42) and (43), one can readily 
get Ottinger's expansion formulae for the fields q1 and q2 (Ottinger 1981). 

Appendix 1. Connection with integral-type formulations 

A l .  1. One-component case 

We will obtain here the relation between our formalism, which is formulated in terms 
of an ordinary differential equation ( lo) ,  and the usual formalism based on integral 
equations. 

To begin with, we will derive the quantum analogue of the Marchenko equation 
(Zakharov and Shabat (1971), for the classical case). To accomplish this we consider 
the following operator (which was introduced in § 2.1) 

A = Ij+R'$ ( A l . l )  

together with the definitions 

Ccll(x, k )  = dz elk2Kl(x, z )  & ( x ,  k )  = eikz + dz elk2Kz(x, z). (A1.2) 

On replacing (A1.2) in ( lo ) ,  one readily gets the conditions 

(A1.3) 

To obtain the quantised Marchenko equation we substitute (A1.2) into (Al .1)  to find 

A ( x ,  k )  = (i) e-'kx + dz I? (x, z )  e-'kr + R ( k )  ( ( y )  e ' k ' + ~ ~ ~ d z X ( x , z ) e ' k z )  

(A1.4) 
where we have defined 

(A1.5) 

By operating on (A1.4) with ( 2 ~ ) - ' 5  dk eiky, and using the analytic and asymptotic 
properties of A (see 0 2.1), we finally get 

K(x ,  y )  + (:)RT(x+ y )  + lXmdzR' (z+  y ) K ( x ,  Z) = 0 (A1.6) 
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where 

Rt(x)=(277-’  1 dkRt (k )e ik”  

In order to obtain the desired relation, we need only to prove (A1.3) using our 
formalism. To accomplish this we replace (A1.2) in (19) to arrive at 

+ lxm dz  duK: (x, z)K:(x, u ) R ( z +  U )  

dz  duRt(z+u)K,(x ,  z)Kl(x, U )  (A1.7) 

The reiterated use of (A1.6) allows us to prove that the contribution of the last three 
terms in (A1.7) vanishes identically. Thus we arrive at 

duK:(x, u )R(x+u)  (A1.8) 

Using again (A1.6), we easily find that the right-hand side of (A1.8) is nothing else 
but -2K1(x, x), thus recovering the first of the two conditions (A1.3). 

To recover the second one, we use (20b) together with (A1.2) and we easily get 

d K 2 ( ~ ,  x) /dx = -4cqt(x)q(x). (A1.9) 

Integrating (A1.9), and using (A1.2) to fix the constant of integration, give us the 
complete recovery of (A1.3). 

In this way we have established the equivalence of (19) and (20b) with the form 
(A1.6) of the inverse scattering formalism. 

Finally, it is also possible to make a connection between our formalism and the 
Gel’fand-Levitan integral equation given by Thacker (1981). Because of the rather 
tedious calculations involved, we will merely outline how the formalisms are related. 

With the aid of (16) and (19), it is easy to see that the quantised Jost functions satisfy 

1 ( x, k) eikx = -.’.[ydz dk’ e ikz+2(~ ,  k) (+: ( z ,  k ’ ) d ’ ( k ’ ) + i ( z ,  k’) 
Ti 

i,b2(x, k ) e - ’ * ’ = l - ~ ~ ~ d z d k ’  T1 eik’(+z(z, k ’ ) d ( k ’ ) Q 2 ( z ,  k’) 

-+:(z, k‘)dt(k’)+:(z,  k ’ ) ) + 2 ( ~ ,  k) (Al .  10) 

where d = (i/&)Rt (Thacker’s definition of the reflection coefficient). If one iterates 
(Al.lO),  one exactly gets Thacker’s Gel’fand-Levitan series for the Jost functions, 
and if one replaces these series in (19) one arrives at Thacker’s expansion of the 
Heisenberg field q. 
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A 1 2  Two-component case 

Following a similar procedure to the previous one, we define a convenient generalisation 
of the operator (Al.1). It is not difficult to see that this operator is given by 

where R: and R: have been defined in (43). As before, we make the following 
definitions: 

dzK”’(x, z )  eikr 

d ~ K ( ~ ’ ( x ,  z )  eikr. 

(A l .  12) 

If one substitutes (A1.12) in (33) one arrives at the conditions 

(x )  = -$K \3) (x, x) &(x) = -$K‘,Z’ (x, x). (A l .  13) 

As in the previous case we replace (A1.12) in ( A l . l l ) ,  operate with (257-l l d k  eiky, 
and finally use the analytic and asymptotic properties of V(see (3.1)), to get the 
quantised Marchenko equation for the two-component NLS model 

K“’(x, y ) +  1 R:(x+y)+ 0 R:(x+y)+ dzR:(z+y)K‘2’(x, z )  

(A1.14) 

To prove that our formalism is equivalent to the Marchenko-type formalism, we 
need only to obtain (A1.13) using (42). The proof is rather lengthy and straightforward, 
so I will merely outline how to get it. One replaces the definition (A1.12) in (42), 
and then by the repeated use of (A1.14) one arrives at (A1.13). 

It is also worth noting that the series expansion for the operator Jost functions 
obtained by using (A1.14) is the same if one substitutes (42) back into (33). In other 
words, our formalism also gives the Gel’fand-Levitan series expansion for the two- 
component NLS model. 

i:l 1; 
dzR:(z+ Y)K‘~’(x,  z )  = O .  

Appendix 2. Other inversion formulae 

I will outline here how to obtain some new inversion formulae, which I believe will 
be useful in connection with short-time behaviours and n-point Green functions. 
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First I will derive two new formulae, which even in the classical case have not been 
derived yet. By taking the spatial derivative of (20a) we get (after some simplifications) 

&4,, = 7r-l 1 dk ( 4 ~ - 2 i k ) ~ ( $ : R $ ~ - J / ~ R ~ J / ~ ) + c ( 4 ~ 4 4 + 4 4 ~ 4 ) .  (A2.1) 

The last term of (A2.1) can be rewritten as (using the asymptotic properties of A2,  qhl 
as ( k l + c o )  

( A 2 . 1 ~ )  

On replacing ( A 2 . 1 ~ )  in (A2.1) we finally arrive at the inversion formula for 4,,.The 
classical formula for qxx is readily found by taking ( c / 2  - 2ik) + (-2ik) in the first term 
of (A2.1). 

The second formula is for the time derivative of 4. To obtain it, we use (A2.1), 
( A 2 . 1 ~ ) :  and the equation of motion (4), and we get 

i4, =- 
7T 'I 7T 

(A2.2) 

To get the classical formula for qt we take (c/2--2ik)+ (-2ik) in the first term of 
(A2.2) and do not consider the last term of (A2.2) since it arises from quantum 
orderings. 

Finally I will merely write an inversion formula for the product of 2 N  Heisenberg 
fields (which can be derived following the techniques used in § 2.1). The formula is 

It is worth remarking that there is no way to get formulae like (A2.3) using other 
formulations of the inverse method (even in the classical case). In the quantum case 
(A2.3) is relevant in connection with n-point Green functions. 
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